

Vector algebra

Vectors can be represented in several different ways

a or
$$\overrightarrow{AB}$$
 or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$

a represents a path, joining the point A to the point B

Column vectors represent a translation: the top number is left/right, the bottom number is up/down

 $\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'

Column vectors can be added and subtracted, or multiplied by a scalar value = $3\binom{2}{1} + 2\binom{4}{-1}$

$$= \binom{6}{3} + \binom{8}{-2}$$
$$= \binom{14}{1}$$

Vectors are **parallel** if one is a scalar multiple of the other Eg: $2\mathbf{a} + \mathbf{b}$ and $6\mathbf{a} + 3\mathbf{b}$ are parallel

	_	30	\sim		F
		~	<u> </u>		
	/				
-	-	-	-	-	
-	_				
u u	-				

Vector expressions can be **simplified** as algebra Eg: $2\mathbf{a} + 4(\mathbf{a}-\mathbf{b}) = 6\mathbf{a} - 4\mathbf{b}$

Vector geometry

Vectors describe paths, and these paths can be combined by following the arrows. You can only move along a path you have a label for.

Vector geometry will use the properties of shapes including parallel sides (rectangles, parallelograms, regular hexagons) and sides of equal lengths (rhombuses, squares, regular polygons

Note: the vectors **a** and **-a** are of equal length and parallel but have arrows in opposite directions