Yea	11 Unit $1 \begin{gathered}\text { Millthorpe School } \\ \text { Mathematics Department }\end{gathered}$
Vectors	
Prior knowledge: Year 10 unit 3 graphs Year 9 unit 4 algebraic expressions	
Leads onto: Year 11 exams Year 12 mechanics	
What do I need to be able to do? - Use and understand different representations for vectors - Complete vector arithmetic - adding, subtracting and scalar multiplication - Simplify vector expressions - Represent vectors geometrically - Use properties of 2D shapes to solve geometric problems - Use ratio to divide vector paths - Produce geometrical proofs of whether points are collinear, and vectors are parallel	Keywords/formula Vector: A quantity with both size and direction Magnitude: the size of a vector, geometrically this is the length of the line Scalar: a 'normal' number that does not have direction eg 3c, 3 is a scalar quantity, \mathbf{c} is a vector quantity Resultant vector: the end result from two or more vectors being added together Equal: vectors are equal if they have the same length and direction Parallel: vectors are parallel if one is a scalar multiple of the other Collinear: Vectors that are parallel and share a common point

Vector algebra

Vectors can be represented in several different ways

$$
\text { a } \begin{array}{llll}
\text { or } & \overrightarrow{A B} & \text { or } & \binom{1}{3}
\end{array}
$$

a represents a path, joining the point \mathbf{A} to the point \mathbf{B}

Column vectors represent a translation:
the top number is left/right, the bottom number is up/down

$$
\begin{aligned}
& \binom{2}{3} \text { means '2 right, } 3 \text { up' } \\
& \binom{-1}{-5} \text { means ' } 1 \text { left, } 5 \text { down' }
\end{aligned}
$$

Column vectors can be added and subtracted, or multiplied by a scalar value

$$
\begin{aligned}
& =3\binom{2}{1}+2\binom{4}{-1} \\
& =\binom{6}{3}+\binom{8}{-2} \\
& =\binom{14}{1}
\end{aligned}
$$

Vectors are parallel if one is a scalar multinle of the other Eg: $\mathbf{2 a}+\mathbf{b}$ and $\mathbf{6 a}+\mathbf{3} \mathbf{b}$ are parallel

Vector expressions can be simplified as algebra $E g: 2 a+4(a-b)=6 \mathbf{a}-4 b$

Vector geometry

Vectors describe paths, and these paths can be combined by following the arrows. You can only move along a path you have a label for.

$$
\begin{aligned}
& \hline \overrightarrow{O A}=a \\
& \hline \overrightarrow{A B}=b \quad \overrightarrow{B O}=-a \\
& \hline \overrightarrow{O B}=\overrightarrow{A B}+\overrightarrow{O B}=-a+b=b-a \\
& \overrightarrow{B A}=\overrightarrow{B O}+\overrightarrow{O A}=-b+a=a-b \\
& \hline
\end{aligned}
$$

Example 1: X is the midpoint of $A B$. Find $\overrightarrow{O X}$ Answer: Draw X on the original diagram

Now build up a journey.
You could use $\overrightarrow{O X}=\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A B}$.
This will give: $\overrightarrow{O X}=a+\frac{1}{2}(b-a)$.
This will simplify to $\frac{1}{2} a+\frac{1}{2} b$ or $\frac{1}{2}(a+b)$

Vector geometry will use the properties of shapes including parallel sides (rectangles, parallelograms, regular hexagons) and sides of equal lengths (rhombuses, squares, regular polygons

Note: the vectors a and -a are of equal length and parallel but have arrows in opposite directions

