| Year 11 Unit 2 |  |
| :---: | :---: |
| Inequalities (Higher) |  |

Prior knowledge: Year 10 unit 3 graphs
Year 10 unit 6 solving linear equations inc simultaneous
Leads onto: Year 11 exams
Year 12 absolute value (modulus) functions

## What do I need to be able to do?

- Use and understand
inequality symbols
- Represent inequalities on a number line
- Solve linear inequalities
- Draw and identify linear graphs
- Represent linear inequalities on a graph
- Determine a region that satisfies two or more inequalities
- Solve quadratic inequalities
- Solve simultaneous equations with one linear and one quadratic equation
- Determine the number of roots/points of intersection
- Use the equation of a circle as one of a pair of simultaneous equations

Keywords/formula Inequality symbols:
$>$ greater than
< less than
$\geq$ greater than or equal to
$\leq$ less than or equal to
$\neq$ not equal to
NOTE all of these are dependent on which way round you say them

Inclusive inequality: one which includes the end value eg $x \geq 4$ includes 4

Strict inequality: one which does not include the end value eg $x>4$ does not include 4

Integer: a positive or negative whole number

Equation of a straight line: $y=m x+c$ Quadratic equation: $a x^{2}+b x+c=0$ Equation of a circle: $x^{2}+y^{2}=r^{2}$

## Linear inequalities

Inequalities can be represented on a number line
$\mathbf{X}=3$

$\mathbf{x} \leq \mathbf{3}$
$\stackrel{-4}{-1-2}+\underset{6}{-1+4}+\frac{4}{4}$

$x<3$


## Inclusive inequalities are

 represented by a closed circleStrict inequalities are represented by an open circle

Inequalities can represent a value that lies between two points


Inequalities can be solved in the same way as equations

$$
\begin{aligned}
4 x+1 & <13 \\
4 x & <12 \\
x & <3
\end{aligned}
$$

Solutions can be represented as a range of values eg $x<3$
On a number line (as above)
Or as integer values eg 2, 1, $0,-1,-2,-3 \ldots$.

Simultaneous equations can be solved by elimination - adding or subtracting one equation from another once the coefficients are the same

## Graphing inequalities

Strict inequalities are represented by a dashed line: $y>2 x+1$ Inclusive inequalities are represented by a solid line: $y \geq 2 x+1$

Regions can be bounded by two or more inequalities


$$
\begin{aligned}
& y \geq 2 x+1 \\
& y<1 \\
& x>0.5
\end{aligned}
$$

Quadratic inequalities require you to factorise then use the roots of the equation as the key values of the inequalities: $x^{2}+4 x+3>0$ has the solutions $x>-1$ and $x<-3$


Quadratic simultaneous equations can be solved by
substitution - replacing one variable in the quadratic equation with the linear equation
$x^{2}+y^{2}=9$
$y=3 x-4 \quad$ becomes $x^{2}+(3 x-4)^{2}=9$
which has two solutions (points of intersection)


