

Year 11 Unit 2

Mathematics Department

Inequalities (Higher)

Prior knowledge: Year 10 unit 3 graphs Year 10 unit 6 solving linear equations inc simultaneous	
Leads onto: Year 11 exams Year 12 absolute value (modulus) functions	
 What do I need to be able to do? Use and understand inequality symbols Represent inequalities on a number line Solve linear inequalities Draw and identify linear graphs Represent linear inequalities on a graph Determine a region that satisfies two or more inequalities Solve quadratic inequalities Solve simultaneous equations with one linear and one quadratic equation Determine the number of roots/points of intersection Use the equation of a circle as one of a pair of simultaneous equations 	Keywords/formula Inequality symbols: > greater than < less than 2 greater than or equal to \leq less than or equal to \neq not equal to NOTE all of these are dependent on which way round you say them Inclusive inequality: one which includes the end value eg $x \ge 4$ includes 4 Strict inequality: one which does not include the end value eg $x > 4$ does not include 4 Integer: a positive or negative whole number Equation of a straight line: $y = mx + c$ Quadratic equation: $ax^2 + bx + c = 0$ Equation of a circle: $x^2 + y^2 = r^2$

Linear inequalities

Inequalities can be represented on a number line

Inclusive inequalities are represented by a closed circle

Strict inequalities are represented by an open circle

Inequalities can represent a value that lies between two points

Inequalities can be **solved** in the same way as equations

$$4x + 1 < 13$$
$$4x < 12$$
$$x < 3$$

Solutions can be represented as a range of values eg x < 3On a number line (as above)

Or as integer values eg 2, 1, 0, -1, -2, -3....

Simultaneous equations can be solved by **elimination** - adding or subtracting one equation from another once the coefficients are the same

Graphing inequalities

Strict inequalities are represented by a dashed line: y > 2x + 1**Inclusive inequalities** are represented by a solid line: $y \ge 2x + 1$

Regions can be bounded by two or more inequalities

 $y \ge 2x + 1$ y < 1x > 0.5

Quadratic inequalities require you to factorise then use the roots of the equation as the key values of the inequalities: $x^2 + 4x + 3 > 0$ has the solutions x > -1 and x < -3

Quadratic simultaneous equations can be solved by substitution - replacing one variable in the quadratic equation with the linear equation

$$x^{2} + y^{2} = 9$$

 $y = 3x - 4$ becomes $x^{2} + (3x - 4)^{2} = 9$

which has two solutions (points of intersection)

